Antiinflammatory Therapies for Uveitic Glaucoma

VALERIE TRUBNIK, MD, FACS

Effective treatment of uveitic glaucoma requires adequate control of both inflammation and intraocular pressure (IOP). A rational approach to this challenging therapeutic entity begins with proper antiinflammatory therapy, as alleviation of intraocular inflammation can often control both the uveitis and secondary IOP increase.

Secondary glaucoma is a serious complication of uveitis, occurring in about 20% of cases. In general, glaucoma is relatively more prevalent in anterior segment inflammation. More specifically, the forms of uveitis most commonly associated with glaucoma include Fuch’s heterochromic iridocyclitis (FHIC); glaucomatocyclitic crisis (Posnner-Schlossman syndrome); herpetic keratouveitis; and uveitis associated with juvenile rheumatoid arthritis (JRA), sarcoidosis, or anklylosing spondylitis. Tuberculosis and syphilis also commonly raise intraocular pressure (IOP) but are extremely rare in the US.

Patients with uveitic glaucoma (ie, inflammatory glaucoma) present a formidable challenge to clinicians, as the coexistence of uveitis and glaucoma results in a more complicated clinical presentation and calls for complex management decisions. This article discusses certain special considerations in the management of patients with uveitis and elevated IOP, highlighting the importance of careful clinical evaluation, the various mechanisms giving rise to IOP increases in uveitic eyes, and the central role of antiinflammatory therapy.

GENERAL AND SPECIFIC SIGNS

Intraocular inflammation can produce a constellation of clinical signs. Those indicative of anterior uveitis include keratic precipitates (KPs), cells and flare in the anterior chamber, iris nodules, peripheral anterior synechiae, posterior synechiae leading to pupillary block and iris bombé, pigment on the lens, and neovascularization of the angle. In the intermediate and posterior segment of the eye, signs of uveitis include vitreal inflammatory cells, snowball inflammatory cells, snowbank opacities, exudates over the pars plana (ie, “snowbanks”), retinal or choroidal inflammatory infiltrates, cystoid macular edema (CME), and vascular sheathing. Some clinical signs are more specific: epithelial dendrites are typical with herpes simplex infection and pseudo dendrites with herpes zoster; iris atrophy and neovascularization in the angle are often found in FHIC; and band keratopathy or corneal stromal scarring is usually seen with chronic uveitis.

In addition to a complete ocular examination, a comprehensive history and review of systems is important in patient assessment, as it helps elucidate the cause of uveitis. In any patient, recurrent, bilateral, or granulomatous uveitis should raise the suspicion of an underlying systemic etiology. As already mentioned, systemic conditions commonly associated with uveitic glaucoma include sarcoidosis, anklylosing spondylitis, JRA, syphilis, and tuberculosis. For patients suspected of having any of these conditions, a systemic workup including blood-based diagnostic tests and chest X-rays is warranted.

MECHANISMS OF IOP ELEVATION

Although many uveitic patients have a lower IOP—because of decreased aqueous humor production and even ciliary body
with uveitic glaucoma, whose trabecular within the meshwork.4 Corticosteroid modifying the trabecular extracellular altering trabeculocytes' cytoskeleton, are thought to increase outflow resistance and is thought to be primarily due to patient comfort and postoperative inflammation. The ocular anterior angle landscape is changing as research reveals more about the role of inflammation in a range of ocular conditions and as new antiinflammatory agents enter the market.1 Twenty years ago, for example, the idea of topical corticosteroid to treat dry eyes and/or allergic conjunctivitis was viewed with alarm; today, it is accepted practice. Although corticosteroids and nonsteroidal antiinflammatory drugs (NSAIDs) have been the mainstays of the ocular anti-inflammatory armamentarium, a number of new agents with novel mechanisms of action (and new ocular drug delivery systems) have come to market or are being made ready for market.1,4 As indications expand and change, and as new drugs, formulations, and delivery systems become available, clinicians require up-to-date protocols for drug selection and use. Such protocols are also needed for routine (but newer) off-label uses of corticosteroids and NSAIDs because important differences in efficacy, safety, and tolerability exist between these classes and among formulations within each of these classes.5,6 By putting the latest published evidence into the context of current clinical practice, Topics in Ocular Antiinflammatories equips ophthalmologists to maintain competencies and narrow gaps between their actual and optimal inflammation management practices, across the range of clinical situations in which current and novel ocular antiinflammatories may be used.

REFERENCES

OFF-LABEL USE STATEMENT

This work may discuss off-label uses of medications.

GENERAL INFORMATION

This CME activity is sponsored by the University of Florida College of Medicine and is supported by an unrestricted educational grant from Shire. The University of Florida College of Medicine designates this activity for a maximum of 1 AMA PRA Category 1 Credit™. There is no fee to participate in this activity. In order to receive CME credit, participants should read the report, and then take the posttest. A score of 80% is required to qualify for CME credit. Estimated time to complete entire activity is 60 minutes. After completion, take the test online at http://cme.ufl.edu/ed/self-study/toai/. System requirements for this activity are: For PC users: Windows® 2000, XP, 2003 Server, or Vista; Internet Explorer® 6.0 or newer, or Mozilla® Firefox® 2.0 or newer (JavaScript™ and Java™ enabled). For Mac users: Mac OS® X 10.4 (Tiger) or newer; Safari® 3.0 or newer, Mozilla® Firefox® 2.0 or newer. Internet connection required: Cable modem, DSL, or better.

DATE OF ORIGINAL RELEASE

October 2018. Approved for a period of 12 months.

ACCREDITATION STATEMENT

This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of the University of Florida College of Medicine and Candeeo Clinical/Science Communications, LLC. The University of Florida College of Medicine is accredited by the ACCME to provide continuing medical education for physicians.

CREDIT DESIGNATION STATEMENT

The University of Florida College of Medicine designates this enduring material for a maximum of 1 AMA PRA Category 1 Credit™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

EDITORIAL BOARD/FACULTY ADVISORS

Marguerite B. McDonald, MD, FACS, practices at Ophthalmic Consultants of Long Island, and is a clinical professor of ophthalmology at the New York University School of Medicine. She is also an adjunct clinical profes-

sional ophthalmology at the New York Eye and Ear Infirmary of Mt. Sinai. Dr. McDonald is a consultant for Allergan, Alcon, Bausch + Lomb, Blipelex, FOCUS Laboratories, Shire, and J&J Vision.

Victor L. Perez, MD, is a professor of ophthalmology at the Duke University School of Medicine. He is also the director of Duke Eye Center’s Ocular Immunology Center and Ocular Surface Program. Dr. Perez is a consultant for Allergan, Shire, EyeGate, and TopiVert. He is also a stock holder for EyeGate Pharma.

Matthew J. Gray, MD, is an assistant professor in the Department of Ophthalmology at the University of Florida College of Medicine. He states that in the past 12 months, he has not had a financial relationship with any commercialization that produces, markets, resells, or distributes healthcare goods or services consumed by or used on patients relevant to this manuscript.

Bennie H. Jeng, MD, MS, is professor and chair of the Department of Ophthalmology and Visual Sciences at the University of Maryland School of Medicine. He has received grant/research support from NEI and Eye Bank Association of America, and is a consultant for Kedron, Allergan Pharmaceuticals, Aquinox Pharmaceuticals, and EyeGate Pharma. Dr. Jeng is also a stock shareholder for EyeGate Pharma.

Valerie Trubnik MD, FACS, is attending surgeon at Ophthalmic Consultants of Long Island/Spectrum Vision Partners and is affiliated with Mercy Hospital, Winthrop Hospital, and St. Francis Hospital in NY. She states that in the past 12 months, she has not had a financial relationship with any commercial organization that produces, markets, resells, or distributes healthcare goods or services consumed by or used on patients relevant to this manuscript.

DISCLAIMER

Participants have an implied responsibility to use the newly acquired information to enhance patient outcomes and professional development. The information presented in this activity is not to be used as the sole guideline for patient care. Procedures, medications, and other courses of diagnosis and treatment discussed or suggested in this activity should not be used by clinicians without evaluation of their patients’ conditions and possible contraindications or dangers in use, applicable manufacturer’s product information, and comparison with recommendations of other authorities.

COMMERCIAL SUPPORTERS

This activity is supported by an unrestricted educational grant from Shire.
TREATING INFLAMMATION COMPLICATED BY RAISED IOP

The aim of medical therapy for patients presenting with uveitis and secondary glaucoma is to control both the inflammation and the elevated IOP. In addition, any underlying systemic condition should be treated—by either a uveitis specialist or a rheumatologist—to help control the ocular inflammation and possibly the IOP as a result.

Corticosteroids are highly effective against ocular inflammation, and the treatment of inflammation itself should help the management of IOP in uveitis patients by preventing damage and blockage of outflow channels. Still, corticosteroid therapy carries an inherent risk of IOP elevation. To minimize the risk, one of the things clinicians can do when prescribing is to consider the relative IOP-raising potential of a corticosteroid. Topical corticosteroid preparations differ in their ability to produce an ocular hypertensive response; my own clinical experience suggests that difluprednate and dexamethasone have a relatively high propensity for IOP elevation.

My first-choice corticosteroid drop is usually prednisolone acetate 1%, dosed every hour when the eye is actively inflamed and tapered gradually as the inflammation subsides. I usually add a cycloplegic, either a short-acting drop such as cyclopentolate hydrochloride or a long-acting one such as atropine, to help break or prevent the formation of posterior synechiae. If the patient is already on corticosteroid therapy, I make sure there is no need to adjust the medication. If it happens to be difluprednate or dexamethasone, what I typically do is switch over to prednisolone acetate and, if the pressure elevation persists, loteprednol or fluorometholone.

The addition of oral nonsteroidal antiinflammatory drugs (NSAIDs) may greatly benefit patients whose uveitis is difficult to control on topical corticosteroids. Certain oral NSAIDs, such as meloxicam, may help wean patients from topical corticosteroid therapy. If the corticosteroid cannot be successfully tapered with oral NSAIDs, I would then consider short-term use of oral corticosteroids. Immunosuppressive therapy can be particularly useful in the treatment of chronic uveitis. Some of my patients have been able to avoid glaucoma surgery by going on immunosuppressive agents. Because patients receiving immunosuppressive therapy need close monitoring with bloodwork and other tests, I usually refer them to a uveitis specialist or a rheumatologist.

The bottom line is that active inflammation in the anterior segment with an IOP rise is often a sign of trabeculitis. The most important first step in managing affected patients is to reduce the severity of inflammation: prescribe a corticosteroid drop and wait 2 to 4 weeks to see if the eye is still inflamed. Often, inflammation control is all that is needed to lower IOP and no additional IOP-lowering interventions are required. If the pressure remains elevated when the inflammation has abated, consider switching to a less potent corticosteroid. When corticosteroid switch fails to bring IOP under control, it is then time to consider glaucoma treatment.

MANAGING IOP IN AN INFLAMED EYE

That said, the most important consideration in determining when to treat uveitic glaucoma is the severity of pressure elevations and, if any, the extent of optic nerve damage. If the patient is fairly healthy, with normal pachymetry, a healthy nerve, and a pressure in the 20s or even low 30s, my approach is to treat the inflammation, adjust the corticosteroids, and, after that, add IOP-lowering medications. But if the patient has a thin cornea or prior damage to the optic nerve, with a pressure in the high 30s, 40s, or even 50s, I would treat glaucoma right away—with medications or, to quickly lower the pressure, an anterior chamber paracentesis. When patients present with such unsafe or damaging IOP levels, the risk of vision loss is too high to switch around the corticosteroids to see if the inflammation can be better controlled.

My typical first-line therapy for uveitic glaucoma is a topical beta blocker, alpha agonist, or carbonic anhydrase inhibitor (CAI). If topical medications do not suffice, the next step is to add an oral CAI (eg, Diamox or Neptazane) for short-term use. In my practice, surgical intervention is indicated when maximum medical therapy (glaucoma drops plus oral carbonic anhydrase inhibitor) fails to adequately control IOP or when a patient requires repeated paracentesis to reduce IOP.

Prostaglandin analogs (PGAs) are relatively contraindicat-
Contact Lens Wear, Inflammation, and Disease

BENNIE H. JENG, MD

Contact lens wear can upset the delicate balance of ocular surface biodynamics, aggravating underlying inflammatory conditions or introducing new ones. Contact lens-related discomfort alone might be an inflammatory or preinflammatory state. Having a clear idea of contributing factors and management options for contact lens-wearing patients with discomfort is essential to daily practice for eye care providers.

CONTACT LENS DISCOMFORT DEFINED

While eye care providers (ECPs) have long accepted that contact lens wear can cause discomfort, the defining of contact lens discomfort (CLD) as a distinct entity or syndrome is relatively new. According to the 2013 Tear Film and Ocular Surface Society (TFOS) International Workshop on Contact Lens Discomfort, CLD is best defined as “a condition characterized by episodic or persistent adverse ocular sensations related to lens wear, either with or without visual disturbance, resulting from reduced compatibility between the contact lens and the ocular environment, which can lead to decreased wearing time and discontinuation of contact lens wear.”

Adverse ocular sensations—including dryness, irritation,
In one sense, inflammation is a natural, healthy response to a foreign body—including advanced technology contact lenses—that is placed on the eye. Which begs the question, is inflammation really a problem? As outlined in his 2015 presentation, award-winning researcher Nathan Efron, PhD, made the case that “contact lens wear is intrinsically inflammatory” and suggested that low-grade inflammation associated with contact lens wear might be an adaptive or protective response.3 Yale researcher Medzhitov, in his 2008 publication in \textit{Nature} entitled “Origin and Physiologic Roles of Inflammation,” defines parainflammation as a state of subclinical inflammation in which a tissue is stressed and somewhat malfunctioning but not irreversibly damaged.4 It is a state in between homeostasis and inflammation that may benefit patients since it represents a state of readiness to ward off an acute infectious or noxious challenge.5

But even if CLD is a kind of pre- or parainflammatory state without major disruption to the ocular surface, the fact remains that patients in this state are often uncomfortable, and there remains a possibility of progression to a more damaging, fully inflammatory state.3

CLD RISK FACTORS

Some risk factors have been uncovered which help to partially explain why some patients struggle with CLD while others do not. Ocular surface inflammation has been associated with patient comorbidities, such as diabetes, genetic variables, and the ocular resident flora or microbiota.2 Shin and coworkers showed that contact lens wear alters the ocular surface microbiota so that it more resembles that of skin than the eye.7 Hygienic factors—such as improper cleaning and storing: exposure to tap water; sleeping, showering, or swimming in lenses—may also play a role in ocular surface inflammation. Reminding patients about proper cleaning and storage of their contact lenses may reduce their risk for complications.1,2

CLD MANAGEMENT

The first step to managing complaints of discomfort associated with contact lens wear is to rule out other conditions that
might be responsible; these include DED, meibomian gland dysfunction, allergic conjunctivitis, episcleritis, and infection. If a full work-up leaves CLD as the leading diagnosis, a 2-week contact lens “holiday” and lubrication with preservative-free artificial tears is recommended. A topical antiinflammatory agent, such as a short course of loteprednol, may be indicated if symptoms or inflammation are moderate to severe. Improvement on the holiday, followed by worsening upon re-exposure to contact lens wear, is consistent with a diagnosis of CLD.

The next step is to recommend a change in the patient’s contact lens material, care solution, or routine in order to minimize their risk for a return of bothersome symptoms. Suggestions include changing material or design, changing care solution, or adjusting frequency. My favorite tactic is to eliminate care solutions and lens storage altogether by switching the patient to daily disposable lenses. In my experience, the daily disposable class is the least antigenic and best tolerated, and their packaging solutions tend to be the least inflammatory.

CL WEAR AND DED

Patients with bona fide DED that is revealed or exacerbated by wearing contact lenses requires discontinuation of contact lens wear followed by evaluation and treatment of DED, just as one would for a non-contact lens wearer.

Effective DED treatment starts with identifying DED subtype—aqueous deficiency, lipid deficiency (evaporative), or mechanical (blink-related) DED subtypes—and directing treatment toward the root cause of the problem. First line therapy for aqueous deficiency DED is supplementation with preservative-free artificial tears; for evaporative DED, treatment of meibomian gland dysfunction and blepharitis. Patients with incomplete or reduced blink related to Parkinson’s disease, nocturnal lagophthalmos, or lower lid ptosis require specialized treatment aimed at correcting lid mechanics.

Disease severity and effectiveness of prior treatment are also important considerations in the treatment of DED. Patients with evidence of low-level inflammation or who have failed to respond to initial, more conservative therapies require topical antiinflammatory treatment with cyclosporine 0.05% or lifitegrast ophthalmic solution 5%. Patients with moderate to severe inflammation might need a short course of a topical ocular corticosteroid. Those with severe DED—such as patients with graft vs host disease or Stevens-Johnson syndrome—might benefit from treatment with a scleral lens (see below).

Much has been written about DED in recent years; for more in-depth diagnostic and treatment algorithms, please see the American Association of Ophthalmology (AAO) preferred practice pattern, the Tear Film and Ocular Surface Society Dry Eye Workshop II, or the Cornea External Disease and Refractive Society guidelines.

CONTACT LENSES AND ALLERGY

Similar to contact lens-wearing patients with DED, those with allergic disorders of the eye should discontinue contact lens wear until the underlying inflammatory process is adequately treated. For patients with seasonal or perennial allergic conjunctivitis, treatment with olopatadine or a combined antihistamine/mast cell stabilizer agent may be indicated. Sometimes a patient will be very resistant to discontinuing contact lens wear; if they are otherwise very compliant and reliable, I will occasionally bend my own rule and allow use of a drop, such as olopatadine, before and after contact lens placement. I do not, however, permit topical corticosteroid use in conjunction with contact lens wear under any circumstances due to the increased risk for infection.

Comprehensive guidelines for the management of allergic conjunctivitis are available from the AAO.

Patients with giant papillary conjunctivitis (GPC) require discontinuation of contact lens wear—which is the cause of GPC—and treatment with a short course of a topical ocular corticosteroid. When cleared for contact lens wear, I will typically have them switch the contact lens type: those who had been wearing a rigid gas permeable are switched to a soft daily wear lens; those on a daily wear to a daily disposable.

CONTACT LENSES AND MICROBIAL KERATITIS

The ability to differentiate an inflammatory from an infectious condition is critical to evaluating contact lens-related discomfort. The natural history and management of microbial keratitis—which may occur with or without contact lens wear—is distinct, and haphazard use of antiinflammatory treatments can lead to worsening and poor outcomes, including blindness.

Contact lens-induced peripheral ulcer (CLPU) and immune-mediated infiltrate are inflammatory conditions with characteristic—albeit not foolproof—appearances on examination. Inflammatory conditions such as infiltrative keratitis are commonly peripherally located (often about a millimeter from the limbus) and appear as small white infiltrates. They are sometimes associated with minor epithelial breakdown that appears as positive punctate staining. An area of epithelial breakdown that is smaller than the underlying infiltrate is a clue that the direction of the tissue involvement is from the inside out and suggests a primary inflammatory process.

By contrast, infectious ulcers tend to be larger, irregular-edged lesions located more centrally; they may be surrounded by smaller satellite lesions. An ugly or “soupy” appearance should raise concern for an infectious cause, such as Pseudomonas species. Infectious lesions start on the external surface and move inward; thus, the size of the epithelial involvement and the underlying infiltrate is typically the same initially. Associated symptoms may be significant and may include pain, edema, redness, tearing, discharge, photophobia, and visual disturbance.

Patients with CLD and evidence of an infiltrate should be advised to discontinue contact lens wear. Those with only inflammatory findings could also receive a topical corticosteroid; evidence of improvement typically appears within 24 hours of the start of therapy. On the other hand, if the ulcer appearance suggests an infectious cause, my practice is to
To obtain CME credit for this activity, go to http://cme.ufl.edu/ed/self-study/toai/

Another therapeutic extended-wear contact lens type that assists in healing various types of corneal disruption, typically that associated with surgery or trauma.

CONCLUSION

CLD is a diagnosis of exclusion. Discomfort associated with contact lens wear warrants a workup for dry eye, allergy, and other underlying disorders. Treatment should always be directed at the root cause and supported by symptomatic care and antiinflammatory measures. Contact lenses that promote ocular surface healing are available.

Bennie H. Jeng, MD, MS, is professor and chair of the Department of Ophthalmology and Visual Sciences at the University of Maryland School of Medicine. He has received grant/research support from NEI and Eye Bank Association of America, and is a consultant for Kedrion, Aerie Pharmaceuticals, Aquinox Pharmaceuticals, and EyeGate Pharma. Dr. Jeng is also a stock shareholder for EyeGate Pharma. Medical writer Noelle Lake, MD, assisted in the preparation of this manuscript.

REFERENCES

THERAPEUTIC CONTACT LENSES

While conventional contact lenses may induce inflammation, other types are specifically designed to alleviate inflammation. Scleral contact lenses are rigid gas permeable lenses large enough to rest on the conjunctiva, vaulting over the whole cornea and bathing the ocular surface with its fluid-filled reservoir. Scleral lenses provide symptomatic relief to patients, protect against sheering forces of the lid, and promote healing of the ocular surface (Figure 1).

Scleral lenses may be used to treat a variety of conditions associated with moderate to severe corneal or conjunctival inflammation, including keratoconjunctivitis sicca, cicatrizing conjunctivitis, recurrent erosions, neurotrophic keratopathy, exposure keratopathy, non-healing epithelial defects, and limbal stem cell deficiency. Scleral lenses are also effective and well tolerated for the treatment of severe or recalcitrant DED, i.e., in patients for whom topical antiinflammatory treatment options have been exhausted.

A downside to scleral lens use is its somewhat more complex fitting process compared to regular contact lenses, which may involve multiple office visits. As the research base expands and more designs come to market, scleral lenses may become more widely used for both disease treatment and refractive purposes. The bandage soft contact lens (BSCL) is

have the patients stop wearing their contact lenses; I scrape and culture the ulcer, treat with fortified antibiotics to cover the possibility of infection, and then have them return to the clinic in 24 hours for reevaluation. At this point, I do not necessarily expect drastic improvement, but I would like to make sure they are not worse.

Distinguishing an inflammatory versus an early infectious ulcer in a contact lens wearer is challenging when the ocular surface has mild, mixed, or unusual characteristics. In such instances, it is wise to err on the side of caution, following up within 24 hours of stopping contact lens wear and again 24 hours later if antiinflammatory and/or antibiotic treatment is started.

FIGURE 1

A properly positioned scleral lens protects the ocular surface without directly contacting the cornea. (Image courtesy of Dr. Jeng and Luis Toledo, OD.)

OCULAR ANTIINFLAMMATORIES

Topics in...
1. Which of the following therapies is recommended by Dr. Trubnik as the first step in managing patients who present with uveitis and moderately raised IOP?
 A. A topical corticosteroid
 B. A topical NSAID
 C. An IOP-lowering drop
 D. An immunosuppressive agent

2. Mechanisms by which contact lenses may stress the ocular surface include:
 A. Disrupting the tear film
 B. Inducing hypoxic stress
 C. Serving as a vehicle for microbes and their toxins
 D. All of the above

3. According to Dr. Trubnik, which class of IOP-lowering medications should be avoided in patients with uveitic glaucoma?
 A. Prostaglandin analogs
 B. Beta blockers
 C. Alpha agonists
 D. Carbonic anhydrase inhibitors

4. According to research by Shin and coworkers, ocular surface microbiota in contact lens wearers is similar to:
 A. Skin microbiota
 B. Oral microbiota
 C. Ocular surface microbiota of non-contact lens wearers
 D. None of the above

5. Which of the following uveitis types are commonly associated with secondary glaucoma?
 A. Herpes virus-associated uveitis
 B. Fuch’s heterochromic iridocyclitis
 C. Sarcoidosis-associated uveitis
 D. All of the above

6. Which of the following statements is FALSE about uveitic glaucoma?
 A. Its overall prevalence in uveitic patients is about 20%
 B. It occurs more commonly with anterior segment inflammation
 C. It occurs in the form of both open-angle and angle-closure glaucoma
 D. Most cases require surgical intervention to lower IOP

7. Corticosteroids are thought to raise IOP by causing:
 A. Synechial closure
 B. Increased aqueous viscosity
 C. Alterations in trabecular cells and the extracellular matrix
 D. Trabecular neovascularization

8. Which of the following is NOT a typical characteristic of an inflammatory ulcer from contact lens wear?
 A. Central location
 B. Large soupy infiltrate
 C. Epithelial breakdown smaller than infiltrate
 D. Both A and B

9. Which of the following is a soft, extended-wear contact lens that may be used in post-operative recovery?
 A. Scleral lens
 B. Bandage contact lens
 C. Both
 D. Neither

10. According to the TFOS definition, CLD results from:
 A. Elevated levels of IL-6, IL-8, and TNF-α
 B. Reduced compatibility between the contact lens and the ocular environment
 C. Smoking and poor hygiene
 D. A shift in the ocular surface microbiota